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Abstract—Many previous studies have shown that both 
infants and adults are skilled statistical learners. Because 
statistical learning is affected by attention, learners’ ability to 
manage their attention can play a large role in what they learn. 
However, it is still unclear how learners allocate their attention 
in order to gain information in a visual environment containing 
multiple objects, especially how prior visual experience (i.e., 
familiarly of objects) influences where people look. To answer 
these questions, we collected eye movement data from adults 
exploring multiple novel objects while manipulating object 
familiarity with global (frequencies) and local (repetitions) 
regularities. We found that participants are sensitive to both 
global and local statistics embedded in their visual environment 
and they dynamically shift their attention to prioritize some 
objects over others as they gain knowledge of the objects and 
their distributions within the task. 
 

I. INTRODUCTION 

Humans are quite good at detecting patterns in their 
environment, a skill that has been termed statistical, or 
distributional, learning. Statistical learning has been 
demonstrated in the sensitivity of human infants, children and 
adults to the predictability of object features [1], object 
sequences [2], [3], sequences of linguistic elements like 
syllables or words [4], and co-occurrence of words with 
particular objects [5]. Generally, statistical learning is thought 
to be an automatic process, though one that requires at least 
some attention to the stimulus [6]. As learners gain 
information about the patterns in their environment, we 
expect this information to shape their attention and, 
consequently, their future learning.  

What can the dynamics of a person’s attention tell us about 
what they are learning in a particular environment? In general, 
humans are assumed to distribute their attention in order to 
gain information about the environment, such as building 
representations of objects. Attention to a stimulus is thought 
to decline as the learner reaches ceiling for information 
“stored” about the object. This general model has provided 
the framework for analysis of infant looking behavior in 
experimental psychology [7]. Inherent in the Hunter & Ames 
(1988) descriptive model of infants’ attention is a tension 
between novel and familiar stimuli. Learners are thought to 
be motivated to attend to familiar stimuli until they are 
sufficiently “learned”, and then learners are thought to switch 
to preferring a novel stimulus. 

 In support of this general model, 3.5- and 6.5-mo-old 
infants have been found to prefer a familiar stimulus after 
limited exposure to that stimulus but to prefer a novel 

stimulus after a longer exposure [8]. When individual infants 
make the shift from preferring the familiar to the novel is 
thought to depend on individual differences, such as 
processing speed, and on properties of the stimulus (i.e., 
stimulus complexity). Given the same stimulus complexity, 
older infants are expected to shift from a familiarity to a 
novelty preference more quickly [9].  

While the limits of our visual processing abilities are well 
documented (approximately 4 objects can be tracked and held 
in memory), less clear are the specific factors that cause 
attentional shifts between objects, for both infant and adult 
learners. The goal of the current project was to investigate 
how the dynamics of visual attention are related to learning in 
a multi-object environment. In particular, how does the 
frequency of an objects’ presentation (a key component of 
statistical learning) drive a learner’s looking behavior? 

In the current study, we focus on how characteristics of 
the learning environment influence adult learners’ attention 
allocation. Participants are shown simple scenes composed of 
four objects (Figure 1). Participants freely explore these 
scenes while their eye movements are being tracked. We 
manipulated the frequency of presentation of each object in 
order to investigate two types of statistics that might influence 
learners’ looking behavior. First, across all trials, some 
objects were presented twice as often as other objects, 
creating a global frequency distribution. Second, a subset of 
objects on each trial is repeated on the next trial, creating a 
local frequency (i.e., repetition) distribution. This design is 
illustrated in Table 1. 

 This paradigm allows us to test how global and local 
statistics may trade-off or work together in order to drive 
participants’ attention. For any particular trial, each object 
represented one of the four cells in Table 1. The top-left and 
bottom-right cells are easy to interpret, as the global and local 
statistics reinforce one another. The Low Frequency New 
item (LF-New) will always be the most novel stimulus on the 
screen and the High-Frequency Repeated item (HF-Rep) will 
always be the most familiar stimulus on the screen. Thus, 
learners seeking new information should look more to the LF-
New than the HF-Rep objects. 

The other diagonal in Table 1 is less straightforward. For 
these items, the global and local statistics conflict. The High 
Frequency-New item (HF-New) should be highly familiar 
overall (global) but is relatively novel at that moment (local). 
In contrast, the Low Frequency-Repeated item (LF-Rep) 
should be relatively novel overall but is familiar at that 
moment. Our design allows us to assess the relative 
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importance of these conflicting influences over time. In 
addition, we include two different object set sizes. Including 
more objects in the set reduces the frequency of presentation 
for all objects (i.e., global frequency), allowing us to 
investigate how looking behavior is influenced by smaller vs. 
larger difference between global and local statistics. 
 
Table 1. Dimensions for object statistics across trials. 
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For the purposes of the current report, our analyses focus 

on two aspects of participants’ looking behavior: First, we 
asked whether participants actively control their attention 
across trials in response to the global item statistics embedded 
in the visual presentations. HF items were presented twice as 
frequently as LF items. Learners who have the goal of 
collecting an equivalent amount of information about each 
object over the course of the study, would be expected to 
adjust looking times in order to accommodate this difference. 
A learner might accumulate more looking time per 
presentation to each LF item compared with HF items with 
the end result that the learner accumulates about the same 
amount of looking time to each object by the end of the task, 
regardless of object frequency. Such an information-balance 
approach to visual attention would be in keeping with the 
general principles of the trade-offs between novelty and 
familiarity preferences discussed above. 

Second, we asked how global and local regularities 
influence which objects participants prioritize for processing 
(i.e., fixate within the first second of trial onset) as 
participants gain experience with the tasks. We expected that 
early in each task participants would select objects randomly 
and that their looking behavior should become more 
systematic as they learn more about the system. Further, we 
predicted that participants might shift from an initial 
familiarity preference (prioritizing processing HF and/or 
repeated objects) to a novelty preference (prioritizing 
processing of LF and/or new objects).  

II. METHOD 

A. Participants 
Twenty-three volunteers (13 females, Mage = 23.57, SDage = 

3.68) at Indiana University participated in the study.  

B. Materials  
Visual stimuli consisted of 27 color images of novel 

objects that were not readily nameable (see examples in Figure 
1). Images were equal in size (300x300 pixels). All images 
were displayed on a white background on a 17 inch monitor 
with a resolution of 1280 × 1024 pixels.   

C. Apparatus 
The participants’ eye gaze was measured by an Eye Tribe 

tracker. The eye-tracking system recorded gaze data at 30 Hz 

(accuracy = 0.5°- 1°). A chinrest was used to minimize head 
movements. 

D. Experimental Design 
Each participant completed 2 free-viewing tasks within a 

20-minute session. Task 1 consisted of 36 trials and used 9 
novel objects. Three objects belonged to a high frequency 
(HF) set while the other 6 objects belonged to a low frequency 
(LF) set. Four unique objects were presented on each trial. 
Two of these objects were pulled from the HF set, while the 
other 2 were pulled from the LF set. On each trial, one HF and 
one LF object persisted through to the next trial, but were 
displayed in two new locations. The two remaining stimuli 
were chosen by selecting at random one each from the HF and 
LF sets with the constraint that the LF object could not have 
been presented in the past 2 trials. No objects persisted for 
more than 2 consecutive trials. Across the 36 trials, each HF 
object appeared 24 times, and each LF object appeared 12 
times (see Figure 1 and Table 2).  

Task 2 consisted of 72 trials (HF: 6 objects; LF: 12 objects) 
and used the same design as Task 1, but with different object 
sets and frequencies (see Table 2), adding the constraint that 
the new HF object on each trial was not presented on the past 
2 trials. The novel objects used in these two tasks did not 
overlap.  

There were 9 possible display positions, evenly spaced 
along a circle centered on the middle of the monitor. These 9 
positions (300x300 pixels) defined the 9 areas of interest 
(AOIs) in which looks were analyzed. 

 

 

Figure 1. First 6 trials of Task 1. Blue circles/letters indicate 
HF objects and red circles/letters indicate LF objects. In trial 
2, object A is HF-Rep, object C is HF-New, object E is LF-
Rep, object F is LF-New. The colored circles are for 
illustration only and were not present during testing. 



  

E. Procedure 
Participants were seated approximately 60cm from the 

monitor in a quiet room. They were told to watch and study 
the objects on the screen and that they would be asked 
questions about the objects at the end of the session.  

The point of gaze was calibrated with a dot that appeared 
randomly at 9 locations across the screen. Each trial was 
preceded by a fixation cross in the center of the screen; the 
trial began (i.e., the objects were displayed) when 
participants’ gaze was registered on the fixation cross.  Trials 
were 5 seconds in duration. Trial order remained the same 
between participants but the order of tasks was randomized 
for each participant. Participants were allowed to take a short 
break between tasks and were required to redo calibration 
before each task. The entire testing session was about 20 
minutes and no questions were given at the end of either task. 
 
Table 2. Detailed design statistics for each Task. 

 
 

III. RESULTS 

Even though perfect tracking in a continuous mode was not 
possible due to technical limitations of the eye tracker or loss 
of attention, the overall quality of the tracking results was 
satisfactory. In both tasks, about 81% of trials reached 80% 
(roughly 2640 data points per trial). All trials were included 
in the following data analysis. For the purpose of analysis, a 
“look” was defined as a dwell time within an AOI lasting at 
least 0.1 seconds. When looks to the same AOI were separated 
by less than 0.5 seconds of missing data, the missing data was 
filled in as a look to the bracketing AOI.  

Across both tasks, participants spent part of each trial 
looking at each of the 4 objects and generally made 6-8 total 
looks per trial (Mtask1=6.70, SDtask1=1.80; Mtask2=6.81, 
SDtask2=1.86). While the mean number of looks fluctuated 
from trial to trial, there was no clear trend across either task 
toward more or fewer looks over time (Figure 2 top panel). 

Within a trial, individual look durations were unevenly 
distributed. As shown in Figure 3, look durations for both 
tasks were highly skewed. Most looks were about 0.4 seconds 
long, though looks ranged in duration from 0.1-4.5 seconds. 
The mean of the longest look made on each trial was between 
1 and 2 seconds in duration (Mtask1=1.39, SDtask1=0.35; 
Mtask2=1.31, SDtask2=0.33, Figure 2 bottom panel). However, 
on average participants generated less than one look per trial 
that was longer than 1 second (Mtask1=0.85, SDtask1=0.75; 
Mtask2=0.80, SDtask2=0.86).  

 
Figure 2. Top panel: total number of looks within each trial. 
Participants generally made 6-8 total looks per trial. Bottom 
panel:  duration of the longest look within each trial. Mean 
duration of the longest look made on each trial was between 
1 and 2 seconds. 
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Figure 3. Distribution of look durations. Look durations were 
highly skewed with most looks last 0.4 seconds long. 
 

A. Cumulative looking for HF and LF items 
Our first question was the extent to which, across the whole 

of each task, participants actively controlled their attention in 
response to the global item statistics. Participants’ mean 
cumulative looking to each object in Task 1 is plotted in 
Figure 4, with HF objects in the left panel and LF objects in 
the right panel. It is clear from the plots that presentation 
frequency is the primary driver of cumulative looking 
behavior. At the end of the task participants had accumulated 
twice as much looking time to the HF objects (M=21.6s) than 
the LF objects (M=11.9s). Further, the total cumulative 
looking time to the LF objects is approximately equal to the 
cumulative looking time to HF object after their first 12 
presentations (M=11.1s). The same pattern was found in Task 
2 (MHF=20.5s, MLF=11.8s).  

The steady accumulation of looking time across trials 
suggests that participants allocated equal attention to each 
object on each trial rather than spending more time on LF than 
HF items. 



  

 
Figure 4. Accumulated looking time of HF and LF objects in 
Task1. Participants allocated equal attention to objects on each 
trial despite objects’ different presentation frequencies. 

B. Item-level Analyses: Effects of global and local statistics  
Our second question was how the global and local 

frequency statistics influenced looking behavior at different 
time points in each task. To investigate participants’ 
sensitivity to the frequency statistics, we analyzed the 
probability that each of the 4 objects (HF-Rep, HF-New, LF-
Rep and LF-New) would be fixated within the first second of 
the trial. We focused on the first second as a measure of which 
objects the participants placed the highest priority on 
processing. We examined looking behavior across the study 
by dividing each task into 12-trial blocks. Comparing patterns 
of looking across Task 1 and Task 2 allows us to see how set 
size (i.e., the total number of objects) influences looking 
behavior. In Task 1, the smaller set size allows faster 
accumulation of information about each object and quicker 
discrimination between High Frequency and Low Frequency 
objects. 

The probability that participants would fixate each of the 
4 objects during the first second of each trial is presented in 
Figure 5. Across all trials in all blocks, participants most 
frequently fixated between 1 and 2 objects during the first 
second of the trial, though sometimes participants fixated 3 or 
even 4 objects during the first second. The primary trend that 
stands out across the three blocks in both Tasks in Figure 5 is 
participants’ increasing discrimination between the 4 objects 
during the first second. While the models detailed below 
include significant differences between objects even within 
the first block, those effects are much larger in later blocks 
than in Block 1. This general trend illustrates the development 
of participants’ knowledge of the statistical structure of the 
learning environment and they are sensitive to the statistical 
regularities embedded in the environment. 

In the following statistical analyses, the raw data for each 
object for each trial was fit with a logistic multilevel model 
using the lme4 package in R [10]. The model included fixed 
effects of Frequency (High vs. Low), Repetition (New vs. 
Repeated) and Task (1 or 2) and their interaction terms, as 
well as random intercepts for Subject and Trial. Additional 
random effect structures were tested, including a random 
intercept for Subject x Trial and Subject x Task interactions. 
However, because none of these random factors were 
estimated by the model to account for any variance, they were 
left out of the final models. High Frequency, New and Task 1 
served as reference groups coded 0 for the models.  

1) Block 1  
Inspection of the top panel of Figure 5 reveals an 

immediate difference in how participants prioritized each of 
the four object types across the two tasks, with the small set 
size of Task 1 driving attention to the more novel objects (i.e., 
Low Frequency objects were more likely to be fixated than 
High Frequency objects). The opposite was true for Task 2, in 
which participants were least likely to fixate the most novel 
object (i.e., LF-New).  

The logistic multilevel model described above was fit to 
the Block 1 data. The three-way interaction was significant 
(b=1.05, SE=0.37, z=2.81, p = 0.005), confirming different 
patterns of looking across the two tasks. Models were fit to 
each task individually.  

The model fit for Task 1 revealed only a main effect of 
Frequency (b=0.27, SE=0.13, z=2.04, p = 0.041), indicating 
that participants were more likely to fixate the LF than HF 
objects.  Neither the main effect of Repetition nor the 
interaction term was significant. The model fit to Task 2 
revealed a significant Frequency x Repetition interaction 
(b=0.61, SE=0.26, z=2.30, p = 0.021), a marginal main effect 
of Frequency (b=-0.35, SE=0.19, z=1.87, p = 0.062) and no 
effect of Repetition. This pattern of results indicates that 
participants were more likely to fixate the HF-New than the 
LF-New object but were more likely to fixate the LF-Rep than 
HF-Rep objects. 
 These results can be interpreted within the global/local 
framework outlined in the Introduction (see Table 1). Within 
the first 12 trials of Task 1 participants were favoring the 
globally novel stimuli. The larger set size in Task 2, in 
contrast, appears to drive fixations to globally familiar 
stimuli, as the most novel stimulus (LF-New) was the least 
likely to be fixated in the first second of the trial and 
participants had a small preference for HF over LF items.. 
 

2) Block 2 
In the second block, participants were less likely to fixate 

the most familiar item (HF-Rep) than the other items 
regardless of set size (Figure 5, middle panel). The logistic 
multilevel model described above was fit to the data for Block 
2. The three-way interaction between Frequency, Repetition 
and Task was only marginally significant (b=-0.70, SE=0.39, 
z=-1.81, p = 0.070), reflecting the general similarity across the 
two Tasks. The Frequency x Repetition interaction was 
significant (b=1.90, SE=0.28, z=6.87, p < 0.001), as was the 
main effect of Repetition (b=-0.97, SE=0.19, z=-4.86, p < 
0.001). While participants were more likely to fixate New 
rather than Repeated items, this was primarily true for the HF 
items. For LF items, this pattern was reversed, particularly in 
Task 1.  
 

3) Block 3 
Inspection of the lower panel of Figure 5 makes clear that 

in the third block of Task 1, participants prioritized processing 
of the Repeated items, showing a clear dominance of the local 
context. With the larger set size of Task 2 (and therefore less 
total familiarity with individual objects and their 
distributions), participants continued to show an interaction 
between global and local statistics in Block 3.  



  

The same logistic mixed effect model as described above 
was fit to the data for Block 3. The three-way interaction 
between Frequency, Repetition and Task was significant (b=-
2.46, SE=0.41, z=-6.07, p <0.001), reflecting the different 
patterns described above. Individual models were fit to the 
data from each Task. For Task 1, there was a significant main 
effect of Repetition (b=1.10, SE=0.12, z=-1.69, p <0.001) and 
no main effect of Frequency or interaction. For Task 2, both 
main effects and their interaction were significant: Frequency 
(b=1.02, SE=0.20, z=5.19, p <0.001), Repetition (b=0.53, 
SE=0.20, z=2.70, p=0.007), Frequency x Repetition (b=-2.14, 
SE=0.29, z=-7.46, p <0.001). 

 

 
Figure 5. Mean probability of fixation within the first second 
for each of the 4 objects by Task (columns) and 12-trial 
Blocks (rows). Error bars represent standard error of the 
mean. 

IV. DISCUSSION  

The goal of the present study was to characterize how 
visual attention is allocated across objects varying in novelty. 
We manipulated both global frequency, by presenting some 
objects twice as frequently as others, and local frequency, by 
repeating some objects from one trial to the next. 
Additionally, the complexity of the task as a whole was 

manipulated by varying the total number of objects. Relative 
to Task 1, the larger set size of Task 2 effectively reduced the 
global frequency for all objects, creating a starker contrast 
between global and local statistics. 
 We found, somewhat surprisingly, that participants did not 
compensate for differences in item frequency by looking 
more to the less frequent items each time they were presented. 
While look dynamics early in the trial revealed sensitivity to 
global and local statistics, across the trial as a whole 
participants spent about equal time looking at each of the four 
objects. One possible explanation for this is that, given 4 
objects and 5 seconds to look, participants had more time than 
required to process all the objects. With 4 objects displayed at 
a time, we would expect participants to be able to keep track 
of the objects in the display fairly easily [11] and perhaps the 
objects were simple enough that participants were able to 
reach ceiling for information gain within each trial and so did 
not need to strategize. If this is the case, then adjustments to 
the learning environment that increase the task demands 
would be expected to influence looking behavior. For 
example, one might increase the number of objects per trial, 
reduce the trial duration or increase the complexity of the 
objects. Each of these changes might drive participants to 
prioritize a subset of objects over others across the study as 
whole in addition to the initial fixations of the trial. 
Manipulating these task parameters would also allow a 
comparison between human data and that predicted by formal 
models [12].  
 We analyzed which objects participants fixated within the 
first second of each trial as a measure of which objects they 
were prioritizing for processing. In contrast to the total 
looking times, these item-level analyses demonstrated that 
participants’ initial fixations within each trial were highly 
sensitive to global and local statistics, including set size.  

Importantly, the different patterns of fixation across the two 
tasks during the first block of trials offer support for the idea 
that learners will show an initial familiarity preference until 
they have reached some processing threshold, at which point 
they show a novelty preference. During the first block, 
participants saw each HF object 8 times in Task 1 but only 4 
times in Task 2. Initial looks for Task 1 show an overall 
(relatively weak) novelty preference while for Task 2 
participants were actually least likely to look at the most novel 
object, focusing more of their initial processing on more 
familiar items. Thus, in the initial stages of learning, 
participants prioritized more familiar items, while they shifted 
to prioritizing more novel items as they became more familiar 
with both the items themselves and the statistical structure of 
the environment. 
 By the third block of trials, the differing set sizes were 
driving quite different looking behaviors during the first 
second of the trial. In Task 1, participants showed a marked 
effect of local statistics, prioritizing fixation on the repeated 
objects. By the end of the 3rd block in Task 1, participants had 
seen each HF object 24 times and each LF object 12 times. It 
seems that this amount of exposure was sufficient for 
participants to prioritize attending to the local context over the 
global frequency statistics. That is, participants may have 
learned all they could about the various objects themselves 



  

and shifted their behavior to detecting the probability 
structure of the task as a whole. 

It is possible, given the study design, that the looks to the 
repeating objects were evidence of statistical learning. 
Because no object persisted across more than 2 trials, the 
objects that were New on trial n would necessarily be the ones 
that were Repeated on trial n+1. With the smaller set size, this 
pattern may have become salient enough to drive participants 
to confirm which objects repeated before moving on to other 
objects.  
 Such a bias to confirm known patterns does not fit well 
within the novelty-familiarity framework described in the 
Introduction. However, it may be an important way that 
attention supports statistical learning. For example, more and 
less successful adult learners in a cross-situational word 
learning task show different patterns of gaze during learning 
[11]. In that task, participants view arrays of objects while 
listening to a list of words and the only cue to which word 
labels which object is the fact that they co-occur together 
across trials. Yu and colleagues (2012) found that while all 
participants began the study by fixating random objects 
during each word, by the end successful learners were 
consistently fixating the correct referent immediately after 
hearing the label, while less successful learners did not. Thus, 
it seems likely that confirmatory attention shifts play a role in 
developing and maintaining representations of statistical 
structure. 

As the findings in the cross-situational word learning study  
discussed above illustrate, a characterization of real time 
attention dynamics based on object novelty could 
significantly influence our understanding in domains such as 
word learning. Many studies have shown that novel labels can 
drive infants’ attention to novel objects, a behavior commonly 
known as the ‘mutual exclusivity’ response [13], [14], [15]. 
However, when information must be integrated across 
multiple contexts or situations (such as hearing the word ball 
on different days referring to different balls), successful 
learning requires balancing attention between the attraction of 
novelty and solidifying developing representations. Such 
trade-offs have been incorporated in recent successful models 
of cross-situational word learning [16]. 

 The current work makes clear that real-time looking 
behavior is driven by complex interactions between different 
aspects of the environment. We did not measure individual 
differences, either with respect to what participants learned 
about the objects or to general participant characteristics such 
as processing speed, attention flexibility or working memory. 
Such invididual characteristics are likely to be important to 
developing realistic models of attention dynamics. One recent 
model of multi-object visual attention focused specifically on 
how such characteristics might influence shifting between 
objects in an ideal learner [12]. The ideal leaner model was 
defined by parameters for individual differences relevant for 
object processing, including learning rate, memory decay, 
cost of switching between objects and prior knowledge of the 
objects. By simulating environments containing multiple 
objects, Pelz, Piantadosi and Kidd (2005) found that all these 
factors can influence how an ideal learner shifts attention 
between objects in order to maximize information gain. 

Although the underlying dynamics of attention and learning 
are complicated, this model provides many testable 
hypotheses that can be applied to human attentional systems. 

Development of such basic cognitive skills may also play 
an important role in the development of visual attention across 
infancy and childhood. Our study is a first step toward 
characterizing attention dynamics within a distributional 
learning framework in order to better understand how 
attention supports statistical learning.  
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