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Abstract

Word learning happens in everyday contexts with many words and many potential
referents for those words in view at the same time. It is challenging for young learners
to find the correct referent upon hearing an unknown word at the moment. This prob-
lem of referential uncertainty has been deemed as the crux of early word learning
(Quine, 1960). Recent empirical and computational studies have found support for a
statistical solution to the problem termed cross-situational learning. Cross-situational
learning allows learners to acquire word meanings across multiple exposures, despite
each individual exposure is referentially uncertain. Recent empirical research shows
that infants, children and adults rely on cross-situational learning to learn new words
(Smith & Yu, 2008; Suanda, Mugwanya, & Namy, 2014; Yu & Smith, 2007). However,
researchers have found evidence supporting two very different theoretical accounts
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of learning mechanisms: Hypothesis Testing (Gleitman, Cassidy, Nappa, Papafragou, &
Trueswell, 2005; Markman, 1992) and Associative Learning (Frank, Goodman, &
Tenenbaum, 2009; Yu & Smith, 2007). Hypothesis Testing is generally characterized as
a form of learning in which a coherent hypothesis regarding a specific word–object
mapping is formed often in conceptually constrained ways. The hypothesis will then
be either accepted or rejected with additional evidence. However, proponents of the
Associative Learning framework often characterize learning as aggregating information
over time through implicit associative mechanisms. A learner acquires the meaning of a
word when the association between the word and the referent becomes relatively
strong. In this chapter, we consider these two psychological theories in the context
of cross-situational word-referent learning. By reviewing recent empirical and cognitive
modeling studies, our goal is to deepen our understanding of the underlying word
learning mechanisms by examining and comparing the two theoretical learning
accounts.

1. The problem: Word learning challenge

Young children are skilled word learners. During the second year

of life, the rate at which children acquire new words accelerates dramatically

(McMurray, 2007). By age of 18, they know around 60,000 words (Bloom,

2000) including nouns, verbs, adjectives, and other word classes. However,

the set of words acquired before age 2 contains a large proportion of

common nouns for concrete things (Fenson et al., 1994; Gentner, 1982;

Markman, 1989). In order to acquire the meanings of their first words,

young learners have to rely on observing the immediate context to identify

relevant information upon hearing a word. However, determining the

meaning of a newly encountered noun is challenging because in principle

there is an unlimited number of referents inherent in the learning moment

(Quine, 1960). How do infants know which word label maps onto which

object? This problem is termed “referential uncertainty” in the word learn-

ing literature and has been studied extensively in the past several decades.

Carey and Bartlett’s (1978) seminal study of fast mapping suggests

that children as young as 3 years of age can identify at least some aspects

of the meaning of a novel word after only a few exposures, and they dem-

onstrated successful retention of the novel word 1 week later. Numerous

studies over the past several decades have replicated the general finding of

fast mapping, and many have focused on how referential uncertainty can

be reduced precisely when parents name an object. For example, children

use behavioral cues to identify the speaker’s referential intention (Baldwin,

1991; Tomasello & Farrar, 1986); they assume a word refers to the whole
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object rather than parts or properties of the object (MacNamara, 1972); and

they assume words have mutually exclusive meanings, therefore existing

knowledge can be helpful for finding new word meanings (Markman &

Wachtel, 1988). In addition, argument structure and syntactic context could

also facilitate word learning (e.g., Gillette, Gleitman, Gleitman, & Lederer,

1999). Young learners clearly are able to infer correct word-referentmappings

in those referentially clear moments, but everyday learning contexts can be

messy and highly ambiguous (Medina, Snedeker, Trueswell, & Gleitman,

2011). One critical question is whether young learners acquire word-referent

mappings from ambiguous contexts, and if so, how.

Cross-situational learning (CSL) is a mechanism proposed to explain

word learning in noisy contexts as learners aggregate information across

individual learning situations (Siskind, 1996; Smith, Smith, & Blythe,

2011; Yu & Smith, 2007). The logic of CSL is that when learners hear a

word, there is a set of potential candidate referents available. Although

learners are unable to identify the correct word–object mapping after a single

exposure, if learners can combine information across multiple exposures,

they are able to determine the most probable referent by integrating multiple

candidate sets over time. Basically, hearing words in enough various

contexts would allow learners to rule out incorrect associates and learn

the most consistent mappings, which are likely to be the correct ones.

A growing body of research shows that adults are quite good at accumulating

statistical evidence across individually ambiguous learning contexts with mul-

tiple novel words and multiple novel objects (Aussems & Vogt, 2015; Chen,

Zhang, &Yu, 2018; Fitneva &Christiansen, 2011; Koehne &Crocker, 2015;

Monaghan, Mattock, Davies, & Smith, 2015; Onnis, Edelman, & Waterfall,

2011; Wang & Mintz, 2018; Yu & Smith, 2007). Experimental studies

also indicate that infants and young children do this kind of learning as well

(Akhtar &Montague, 1999; Scott & Fisher, 2011; Smith&Yu, 2008; Vlach&

Johnson, 2013; Vouloumanos & Werker, 2009; Suanda, Mugwanya, &

Namy, 2014). To illustrate how CSL works, we use a simple example

(Fig. 1): a learner hears the words “ball” and “bat” in the context of seeing

object BALL and object BAT; without other information, the learner cannot

know whether the word form “ball” refers to one or the other visual object.

However, if subsequently, while viewing another scenewith the potential ref-

erents of BALL andDOG, the learner hears the words “ball” and “dog” and if

the learner can combine cooccurrence information from these two trials, the

learner could correctly map “ball” to the object BALL (and perhaps also infer

the connection between the word “bat” and the object BAT).

39Cross-situational Learning Mechanisms



Although the cross-situational solution seems to be quite straightforward,

cross-situational statistical learners need to possess the following set of

cognitive skills to accomplish the learning task: (1) they need to recognize

both individual word tokens and individual objects; (2) they need to register

cooccurrences and non-cooccurrences; (3) they need to remember previous

word-referent pairings; (4) they need to aggregate the information across

trials; and (5) finally, they need to calculate the correct statistics from

cross-trial information. What is the mechanism or system of mechanisms

that supports word-referent statistical learning? Extant computational and

experimental research suggests that more than one mechanism could explain

cross-situational word learning findings, including Hypothesis Testing (HT)

Fig. 1 A toy example of cross-situational learning to illustrate how words are learned
with multiple learning trials.
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(Medina et al., 2011; Trueswell, Medina, Hafri, & Gleitman, 2013) and

Associative Learning (AL) (Kachergis, Yu, & Shiffrin, 2012; Yu & Smith,

2007). The goal of this chapter is to better understand how different learning

mechanisms work, how they account for empirical evidence collected from

both infant and adult learners using different experimental paradigms, and to

discuss possible new directions to advance our understanding of not only CSL

but also early word learning in general.

2. Hypothesis testing vs associative learning

2.1 Hypothesis testing
One possible mechanism underlying CSL is called Hypothesis Testing

(HT, Bloom, 2000; Carey & Bartlett, 1978; Gleitman, Cassidy, Nappa,

Papafragou, & Trueswell, 2005; Markman, 1992). According to this

account, when children encounter a new word, they make a specific

hypothesis about what that word means. As they encounter the same word

in a subsequent naming event, they either confirm the hypothesis (i.e., the

same object is present in the subsequent event) or reject the hypothesis (i.e.,

the same object is absent). In rejected cases, a new hypothesis will be

proposed and tested in subsequent events (see Medina et al., 2011;

Trueswell et al., 2013). As shown in the toy example in Fig. 2, the learners

hear the word “ball” and “bat” while seeing both objects, then they make

a hypothesis about the correct mapping by randomly associating an object

(BALL) with a word (bat). In the next situation, they hear the word “ball”

and “dog” while both objects are present, learners check to see whether the

initial BALL—“bat” hypothesis can be confirmed. In this case, the word

“bat” is absent, indicating that the initial mapping is wrong. Therefore,

learners discard the BALL—“bat” hypothesis and randomly pick another

Fig. 2 A toy example of hypothesis testing.

41Cross-situational Learning Mechanisms



one based on the current information. In this example, they pick BALL—

“ball” as the new to-be-confirmed hypothesis. They then repeat the check-

ing process in the third learning trial wherein the word “ball” and the object

BALL are both present, confirming the second hypothesis, and thereafter

the word is considered learned. One key feature of the HT account is that

learners only form one hypothesis or conjecture about an object-label

pairing in one learning moment. They only retain this hypothesis and dis-

card all possible alternatives with no memory of previous experience. In

extreme cases, learners could pick the same wrong mapping repeatedly.

This HT model suggests that children begin word learning by making an

initial fast mapping between a new word and its likely meaning. Although

they also modify the guesses as more input comes in, they do not retain or

use accumulated knowledge from past experiences.

2.1.1 Empirical evidence on HT
Most empirical evidence on HT was based on the “Human Simulation

Paradigm (HSP)” pioneered by Gillette et al. (1999). In one study using

HSP, researchers recorded videos of natural interactions between parents

and their 12- to 15-month-old toddlers at home (Medina et al., 2011).

The videos were cut into 40-s vignettes of parents uttering labels to their

children. The videos were muted, and a beep sound was inserted when

the parent labeled an object. Adult participants were asked to watch the

videos and guess which object the parent intended to label at the beep. They

found that 90% of the vignettes depicting natural learning instances had

accuracy scores below 33%, which suggested that they were uninformative

for identifying the correct referent of the label. Only a small percentage (7%)

of naming instances were considered highly informative. In a following

experiment, researchers showed participants five vignettes, in which four

were Low Informative (LI) and one was High Informative (HI). Across four

different conditions, the HI vignette was placed in different positions: at the

beginning, in the middle, at last, and no HI. Participants made one guess of

the target referent after viewing each vignette, and they also provided a final

conjecture at the end of the experiment. The results showed that participants

were only able to learn the correct word-referent mappings across trials in

the condition where the HI trials were presented first. Learners reached high

accuracy on the first HI vignette (66%) and maintained that guess by the fifth

vignettes (41%). Performance was significantly worse when the first vignette

was LI (below 20%) and learners failed to identify the word at the end even

in cases that HI vignette was placed in the middle or last. Their findings
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suggest that learners only remembered their previous successful guess. If that

guess was rejected, participants had little to no memory of alternative pairings

that they could return to, and therefore could not improve their performance

in later guesses. Guesses on the first trial appeared to determine later learning

accuracy, which is consistent with the HT model (Medina et al., 2011).

2.1.2 Modeling work on HT
Researchers have also proposed and implemented several computational

models built upon the HT approach. To illustrate, we use an extended

version of the learning scenario before we discuss specific models. Let’s

consider a word-learning task as shown in Fig. 3. Learners hear the to-be-

learned word “bosa” five times in different scenarios and each time they

see three different objects. How do learners figure out which object is “bosa”?

According to an HT model called Propose-but-Verify (Trueswell et al.,

2013), the learners would randomly pick an object as the referent first, in this

case, they pick BALL. Because BALL is also present in the second trial, they

were able to confirm this hypothesis and keep it in their working memory.

Same confirmation can be made in the third trial. At trial 4, because BALL

is no longer present, learners reject the original hypothesis and pick a new

object from the current set (i.e., BAT). Now “bosa”—BAT is the new

hypothesis and will be either rejected or confirmed in the subsequent trial

depending on whether it is present. In general, this Propose-but-Verify

algorithm follows three simple steps: (1) begin by randomly selecting a

hypothesis; (2) when the word occurs again, remember the previous guess

with some probability; and (3) if the selected pair is confirmed in the current

referent set, the model would select the referent; otherwise discard the pair

and select another referent at random. Trueswell et al. (2013) found that

Fig. 3 Propose-but-Verify model.
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the very simple Propose-but-Verify model with only one free parameter

captured the general learning patterns observed in human data, providing

support for the HT account.

A variant of the Proposed-but-Verify model called Pursuit is described

in Stevens, Gleitman, Trueswell, and Yang (2017). Instead of completely

getting rid of a disconfirmed hypothesis, the Pursuit model lowers the

association value of disconfirmed pairs, which means they may still remain

a probable hypothesis and could be selected in future trials (Stevens et al.,

2017). As shown in Fig. 4, participants first select BALL—“bosa” as the

initial hypothesis, and this hypothesis gets confirmed once in the second trial

and again in the third trial. At trial 4, the BALL—“bosa” hypothesis is

rejected because the object BALL is not present. Instead of completely

rejecting this hypothesis, learners may instead lower its likelihood as the

correct mapping and at the same time select another object (i.e., BAT) as

a new possible referent. They store both hypotheses in memory and on

subsequent trial 5, both hypotheses will be checked. In this case, BALL

and BAT are both present; therefore, the association value for both hypoth-

eses will be strengthened. Like the Propose-but-Verify model, the Pursuit

model considers only a few hypotheses and ignores all other possibilities

upon confirmation. However, unlike the Propose-but-Verify model,

a disconfirmed referent is not discarded but only has its association value

lowered, allowing the possibility to be selected if it remains the most prob-

able hypothesis next time the word is presented. Both models suggest that

additional referents are added to the hypothesis set only if the most favored

referent fails to be confirmed. In other words, when the most favored

referent continues to be confirmed, the learner ignores all other competing

referents, even when they are also present. This is one of the key differences

between Pursuit learning and AL, which will be discussed next.

Fig. 4 Pursuit model.
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2.2 Associative learning
An alternative mechanism for CSL is Associative Learning (AL), which has

been proposed and supported by many empirical and modeling studies,

suggesting that human learners are able to keep track of multiple possible

word–object pairings simultaneously, and they use aggregated knowledge to

inform later decisions (Frank, Goodman, & Tenenbaum, 2009; Smith &

Yu, 2008; Vouloumanos, 2008; Yu, Ballard, & Aslin, 2005; Yu & Smith,

2007). In this model, word learning can be thought of as classic AL with

multiple cues (i.e., objects) and outcomes (words). Words can be learned

by accumulating information across situations, and this accumulating process

is the key to all associative models of language acquisition. Different from

the HT model discussed earlier, the AL model suggests that word–object
association is not an all-or-none process. Instead, learning passes through a

state of partial knowledge, and this partial stage is critical for building models

and generating interesting predictions.

Fig. 5 shows how a simple AL model works using the same learning

scenario described in Fig. 2. In the first learning scenario, learners would

see two objects BALL and BAT simultaneously and hear two labels:

“ball” and “bat.” They do not know which word maps on to which object,

creating a referentially ambiguous situation, but they know statistically there

are four possible mappings. A cross-situational learner would keep track of

all four mappings (BALL—“ball,” BALL—“bat,” BAT—“ball,” BAT—

“bat”) and carry them over to the next learning trial. In the second trial,

the learner would form four more mappings, but the object BALL and word

“ball” cooccur again. With two counts of association value, this specific

association now gets stronger than other associations. Similarly, in trial 3,

the correct BALL—“ball” mapping is further strengthened with more

cooccurrences. As learners encounter more and more learning situations,

Fig. 5 A toy example of associative learning.
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eventually the correct mapping that the round object is called ball would get

the strongest association because the label and its correct referent are likely

to cooccur more consistently than do other pairs.

2.2.1 Empirical evidence on AL
Based on the CSL paradigm originally reported in Yu & Smith (2007),

several studies have reported empirical evidence to support the AL approach

(i.e., Smith, Smith, & Blythe, 2009; Smith et al., 2011). Moreover, recent

studies using the HSP, described earlier, have also provided empirical

support for the AL model. For example, Yurovsky, Smith, and Yu (2013)

conducted a study using the same HSP used in Medina et al. (2011). In

addition to recording parent–child natural interaction from a third-person

perspective, like in the original HSP studies, they also recorded children’s

first-person view when naming occurred. They showed adult participants

a series of 5-s naming events from either the first- or the third-person view

and instructed the participants to guess the referent that the parent labeled.

The result showed that guess accuracy varied considerably across vignettes.

Based on the identification accuracy, about half of the naming instances were

either highly ambiguous or highly unambiguous. Yurovsky et al. (2013)

then tested whether learners could extract useful information from highly

ambiguous naming instances. They showed participants four ambiguous

vignettes in random orders and asked participants to make a guess after each

video. Interestingly, there was a significant learning improvement across

instances from the first-person view. Learners’ accuracy increased from

12% at trial 1 to 26% at trial 4. However, this incremental learning pattern

was absent from the third-person view. Trial 1 (10%) and trial 4 (15%) accu-

racies were not significantly different. In addition, participants presented

with the first-person child view vignettes not only made a significant

progress after a correct initial guess, but also after an incorrect initial guess,

which contradicts the HT model suggesting that learning would only occur

after initial successful guesses. Yurovsky et al.’s (2013) result is consistent

with the AL view predicting that word learning does not only emerge from

highly informative learning events, but also from aggregating information

from less informative instances.

In a follow-up study using the same set of stimuli, Zhang, Yurovsky,

and Yu (2015) conducted four experiments using the HSP to explicitly

test whether adult learners can form multiple associations and carry over

past knowledge to find potential word meanings or they carry only one con-

jecture forward and either confirm or disconfirm in the very next learning
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exposure (Propose-but-Verify). Zhang et al. (2015) examined in detail the

mechanism by investigating how learning accuracy changed across learning

instances to see how learning unfolds over time with accumulated experi-

ence. An analysis of the sequence of responses across learning instances

revealed a better sense of what strategy learners tend to adopt. For example,

if learners made an initial wrong guess that could not be confirmed in

subsequent exposures, will they show baseline or improved performance

in subsequent trials? Improved accuracy in learning outcomes would support

the AL account and challenge the HT account, as the former suggests that

learning is a continuous process for which all information, even ambiguous,

could facilitate learning. In contrast, the HT account suggests that learners

only store a few hypotheses and then reset the learning process if that

hypothesis cannot be confirmed. According to this account, no improve-

ment in accuracy would be seen after a hypothesis is rejected.

Zhang et al. (2015) found that when viewing two consecutive ambigu-

ous trials, participants’ current trial accuracy (39%) was still significantly

above baseline (11%) even when they failed to find the correct target

from the previous trial. More interestingly, as participants’ total number

of previous correct trials increased, their performance on the current trial

also significantly improved, even in cases when their most immediate pre-

vious trial was wrong. This finding contradicts the Propose-but-Verify

model, which suggests baseline accuracy after a wrong guess. These learning

patterns demonstrate that learners did use their previous knowledge to guide

current decision making and not just the immediate previous learning

trials, but all previous experiences contributed to learning. Real-time behav-

ioral data from this study revealed that learners can gradually accumulate

knowledge from multiple word-learning situations with high uncertainty

and that word learning is more likely to be a slow and continuous process

rather than a one-shot, fast mapping one (Zhang et al., 2015).

2.2.2 Modeling work on AL
Researchers have built many computational models to understand how

learning unfolds over time (e.g., Blythe, Smith, & Smith, 2010; De Beule,

De Vylder, & Belpaeme, 2006; Fazly, Alishahi, & Stevenson, 2010;

Fontanari & Cangelosi, 2011; R€as€anen & Rasilo, 2015; Vogt, 2012). For

example, using infant looking time data from a CSL task, Yu and Smith

(2011) built a computational model with a goal to investigate the structure

in looking patterns generated by the infants and whether certain looking

patterns can predict learning performance at test. In the behavioral part of
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the study, Yu and Smith (2011) conducted a classic CSL task by providing

infants with the opportunity to learn 6 novel words after experiencing

30 training trials. Each trial contains two novel words and objects. The

two objects were presented simultaneously and were shown for 4 s. Follow-

ing training were 12 testing trials. Infants saw two objects (one target, one

distractor from the training set) and heard one word, repeated four times.

Infants’ looking behavior was tracked throughout training and testing and

then subjected to an AL model.

To build an AL model using infant gaze fixation data, a 6�6 association

matrix was used, as shown in the toy example in Fig. 6.With words listed on

the y axis and objects listed on the x axis, the 2�2 matrix included all the

possible associations that learners could possibly track at each trial. Each cell

represented one specific word–object mapping. While the diagonal cells

indicated correct mappings, nondiagonal cells represented mismatches due

to ambiguity inherent in the task. Association strength was defined by the

duration of fixations on that particular object when a label was uttered.

For example, as shown in trial 1, if participants spent 70% of time looking

at object BAT (represented by color black) and 30% of time looking at object

BALL (represented by color white) while hearing the label “bat,” the asso-

ciation strength for BAT—“bat” mapping would be 0.7 and the BALL—

“bat” mapping would be 0.3. Similarly, if they looked at BAT 40% of time

and BALL 60% of time while hearing the label “ball,” the association strength

for the BAT—“ball” mapping and BALL—“ball” mapping would be 0.4

and 0.6, respectively. The model tracks association probabilities, updating

them trial by trial. By adding matrices from individual trials together,

the model generated an accumulated matrix with association values created

Fig. 6 A toy example of the associative learning model.
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by trial-by-trial looking data from the entire training session. The model

assumes that learners make final decisions during testing by selecting

the strongest association from the learners’ internal association matrix.

Therefore, a successful learner’s internal association matrix will have the

highest association strength on diagonal cells.

Yu and Smith (2011) found that by aggregating statistical information

across all learning trials, this model predicted infants’ performance at test,

indicating a strong correlation between predicted results from the model

and the behavioral results from human learners. In addition, this model

was sufficient to predict individual differences and differentiate strong and

weak learners purely based on their looking patterns. This simple model

was tested with data from the specific eye movement patterns made by

infants. In other words, it is based on the specific associations infants formed

and accumulated over trials. It is the case that learners, especially infants

and young children, might not be able to store all of the word–object
cooccurrences viewed due to their limited cognitive capacity. However,

by being able to look at the right referent at the right moment in time seems

to be a good predictor of a successful word learner. By investigating how

learners selectively attend to information through the fine-grained analysis

of their looking patterns to build word–object mappings, Yu and Smith

(2011) showed that a simple AL model can provide a plausible model for

cross-situational word learning.

In this section, we reviewed some past and current research investigating

two fundamentally different word-learning models: HT and AL. By study-

ing both adults and infants, researchers have found behavioral and compu-

tational evidence supporting each model. The disagreement from previous

studies may be explained by the various methods and designs used in differ-

ent studies, as they may rely on different assumptions regarding early word

learning. To fully understand the learning mechanism underlying this debate

on whether word learning follows a “fast mapping” procedure or a gradual

statistical one, we will need to have a deeper understanding of different

psychological components in the learning system.

3. Examining psychological components
in a learning system

Instead of comparing a HT model with an AL model as a whole,

one useful way to further compare the two is to decompose each model into

psychological components. Then we can closely examine those components
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to see if there are differences and similarities between the two learning

mechanisms. In the context of statistical word learning, we proposed

partitioning a CSL model into three psychological components: the infor-

mation selection processes on each trial; the learning machinery, which is

usually viewed as the core of statistical learning; the decision processes used

when participants are tested for their learning of word-referent correspon-

dences (Yu & Smith, 2012).

3.1 Information selection
Cross-situational word-referent learning potentially solves the problem

of learning the mapping of words to referents from individual word–scene
correspondences that are inherently ambiguous. This is expected, in part,

because real world scenes typically contain many objects and many likely

referents, and also because multiple words may be used to talk about that

scene at any instance. All this creates for the learner who does not yet know

many word-referent pairs the problem of figuring out what word goes with

what referent. The core idea of statistical word-referent learning is that the

learner could solve the problem by combining word-referent cooccurrence

data across trials.

But if there are many words and many potential objects, do learners

notice and store them all? A key question for statistical learning is howmuch

and what kind of information is selected and stored at each moment of

learning. Even if one assumes that the units for learning are whole words

(not their parts or phrases) and whole objects (not their parts, properties,

or sets) and even if one limits the learning environment to that of laboratory

cross-situational studies, there are still several words and several referents at

each moment and thus potentially many different solutions to information

selection. One could, as an ideal learner, register all the word-referent pairs

at every learning moment; that is, all the possible pairings, consistent with

the input at each moment, might be stored. To follow the toy example

shown in Fig. 1, an ideal learner would store four word-referent pairs in

the first trial (e.g., BALL—“ball,” BAT—“bat,” BAT—“ball,” BALL—

“bat”). Alternatively, and perhaps more consistent with what is known

about human attention, one might attend to only a subset of words and ref-

erents, registering just partial information—some words, some referents—

from all that is available at a single moment. Selection could be very narrow

(e.g., just one word, one referent per learning moment) or it could

be broader. Further, if learners do select just some of the information,
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what guides selection? It could be random and unrelated to past experience

or it could be influenced by what they have seen before. In any case, the first

step for a model of learning from a series of individually ambiguous learning

trials is to specify the information input that the learning mechanism receives

as we discuss next.

3.2 Learning machinery
In most discussions of statistical learning, the learning machinery is viewed

as the central theoretical question. As discussed previously, there are two

fundamentally different kinds of learning mechanisms and with fundamen-

tally different implications about the nature of the learner. AL is character-

ized as the simple and uninformed registration of cooccurrences and/or the

calculation of probabilities (Yu & Smith, 2007). HT, in contrast, is generally

characterized as a form of learning in which coherent hypotheses are formed

often in conceptually constrained ways and evaluated—not just by counting

cooccurrences—but through some more rational evaluation of the evidence

(Medina et al., 2011). Thus, there seems to be core differences between HT

and AL. However, within these two classes, there are choices to be made

about the learning mechanism itself. For example, an HT learner could keep

track of and aggregate evidence for just some (but not all possible) word-

referent hypotheses. If this is the case, the model needs to specify how those

initial hypotheses are formed or selected as well as how many hypothesized

pairs the learning system is capable of tracking. An HT model also needs to

specify how strong the evidence needs to be for the learning system to accept

or reject a hypothesized pair. An AL learner could simply count registered

occurrences, or such a learner could applymore advanced probabilistic com-

putations based on those counts (Kachergis et al., 2012), such as conditional

probabilities (Aslin, Saffran, & Newport, 1998). In brief, both HT and AL

models have choices about the kind of information aggregated, the kinds of

computations applied to that information, and the form of the learning

outcome.

3.3 Decisions at test
Finally, a learning system needs to specify how the accrued information is

retrieved and used by learners to make decisions during testing. Commonly,

experiments on word learning present the learner at test with a single word

and some number of alternative referents (Yu & Smith, 2007; Yurovsky &

Yu, 2008). Given the evidence accumulated during training—a list of
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hypotheses with weak or strong association strengths—participants must

make a momentary decision, selecting the most likely referent given the

queried word. Learners could apply a winner-take-all strategy such that the

strongest hypothesis or association for the tested word governs choices in an

all-or-none manner. Alternatively, responses could be graded and based on

the probability that a hypothesis is correct or the relative strength of all the asso-

ciations to the candidate word. Further, the decision could be based on the

single word (or word-referent pairing) being queried or it could be based on

a “best overall solution” for all the word–object pairings acquired during train-
ing. In brief, candidate-learningmechanisms also need to specify how acquired

information is retrieved and how decisions are made at the time of test.

Considering the three psychological components (Information selection,

Learning machinery, Decisions at test), recent simulation studies show that

one type of model can simulate the other type of model (Yu & Smith, 2012).

Depending on how these components interact, associative models can gen-

erate learning patterns that are created by hypothesis-testing models with

fewer training trials. At the same time, the associative model can mimic

various hypothesis-testing models by changing how these three components

interact, producing the same learning patterns but through different learning

processes. Specifically, Yu and Smith (2012) proposed a formal unified

learning principle based on both learning mechanisms by identifying some

commonmechanisms that are shared between the two: (1) what information

is stored on an individual learning trial, and (2) how stored information is

evaluated and selected.

First, the AL model stores all possible cooccurrences in a big two-

dimensional matrix, whereas the HT model only keeps a short list of

hypotheses. The former takes in many cooccurrences probabilistically,

whereas the latter only stores the most favored one and ignore all others.

Yu and Smith (2012) suggested that the AL model can be converted into

a HT model if we assign the mapping with the highest strength with 1

and all the others with 0. This makes HT a special binary case of AL. Even

when learners store lexical knowledge in a probabilistic form, during testing,

learners still need to select the most likely mapping and ignore all others.

Different thresholds determine how many pairs learners keep but there is

not a clear threshold to separate the two mechanisms.

Second, during the information retrieval stage, the two processes are

also not fundamentally different. The lexical information stored in the

association learning matrix can be activated in response to a specific input
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(e.g., hearing a word). To find the most likely referent, one can extract the

strongest hypothesis set from the association matrix, or one can decompose

the association matrix into several hypothesis sets and make final conjectures

based on hypothesis test averaging. Yu and Smith (2012) concluded that

there is a natural associative interpretation of the different strategies people

may use and these strategies reside on a continuum. The main idea of this

second point here is that the representational forms posited by associative

and hypothesis-testing accounts of CSL may be understood as two cases

of the same representation (Romberg &Yu, 2014). Although not a new idea

(Mitchell, De Houwer, & Lovibond, 2009), it is not well recognized in the

empirical domain of word-referent learning. It is an insight that may be

particularly important to the understanding of developmental changes in

word-referent learning. It has been suggested on the basis of empirical

evidence that word learning proceeds from a more associationist beginning

to more rapid and smart learning via HT (Hollich, Hirsh-Pasek, &

Golinkoff, 2000). How that transition might happen and the nature of

the processes that underlie it might be better understood if conceptualized

in terms of a transition from denser and graded associationist matrices to

sparser and binary ones. Such a conceptualization may also help us under-

stand how adult performance sometimes looks like the simple accrual of

cooccurrences and other times looks like computationally powerful HT

(Rogers & McClelland, 2004). Admittedly, this is a theoretical conjecture

and considerably more formal and analytic work that needs to be done.

But it is an open possibility in need of systematic exploration.

In this section, we took a closer look at the two competing models using

three directly comparable psychological components: (1) input/information

selection (the amount of information, words, and objects learners choose to

attend); (2) the learning and computational machinery; and (3) the retrieval

and decision processes at test. Computational simulations using these com-

ponents will likely yield testable but different predictions that each model

would make regarding learning. These predictions could then be further

tested behaviorally, which in turn will lead to more refined models that

fit the data better. The goal of comparing components of learning systems

is not to find which of the two word-learning models is better, but to help

reconcile the tension between these two models and suggest how we can

move from a heated debate to a mechanistic understanding of how learners

systematically choose, process, and retrieve information from a learning

system.
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4. New directions

In behavioral studies, the choice of methods could greatly influence

the type of data being collected and the findings drawn from those data

(Tamis-LeMonda, Kuchirko, Luo, Escobar, & Bornstein, 2017). In recent

years, developmental researchers have started to use state-of-the-art tech-

nology in inventing newmethods to examine how infants break into words.

These data capture a more comprehensive picture of infants’ language

experience and are likely to provide new insights on underlying word

learning mechanisms. In this section, we will discuss three new research

directions to investigate the mechanisms of CSL: (1) real-time behaviors;

(2) real-world data; and (3) neuroimaging evidence.

4.1 Real-time behaviors
Looking behaviors have been primarily used as the outcome measures

of infant word learning in many laboratory experiments: Infants “know”

a name when they look to the correct referent upon hearing that name.

Traditional experimental paradigms for word learning often use simple

stimuli. Often times, learners see clear images displayed side by side on a

monitor screen and hear labeling sentences that are loud and clear. However,

everyday visual scenes are ambiguous with respect to the many likely

referents of a heard name. One critical question is: given the visual scene

information from the learners’ perspective, how do learners visually select

objects to attend to when object names are heard?

Selective attention is critical for all learning tasks. Learners need to be

highly selective in sampling useful information from their environment

to learn efficiently and effectively. One useful resource is to measure and

examine visual attention in a CSL task by collecting real-time looking data

over the course of learning as moment-by-moment gaze data can show

how selective attention provides the foundation for building word–object
associations. By capturing real-time looking dynamics, we will be able to

better understand how learning unfolds over time as well as to compare

how different learning strategies lead to different outcomes.

In the context of word learning, ideal learners with unlimited cognitive

resources would have no problem finding the correct word–object
mappings. However, it is impossible for human learners to store all

cooccurrences due to limited attention and memory. If learners only select

a subset of information to attend to, how much information and what kind
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of information do they select, process, and store? Furthermore, what factors

guide information selection? Do learners randomly select objects to attend to

or do past experiences of what they have previously seen, in the form of

familiarity or novelty preferences, guide their attention?

To answers these questions, Yu, Zhong, and Fricker (2012) conducted

an eye-tracking study with adults. They presented participants with a set of

training trials, each containing four novel objects. Following exposure to

the visual display, participants heard four novel word labels in sequence.

Participants were then instructed to select the referent of each word after

training. By analyzing participants’ real-time gaze patterns, these researchers

found that after hearing a word, participants dynamically allocated their

attention across the four novel objects, and they most often spent a large

proportion of time gazing on one object. Overall, at the individual word

level, different learners exhibited similar patterns of visual attention in terms

of the number of fixations and the durations of the longest looks when

exposed to each object. At the within-trial level, one interesting pattern

emerged was that participants tended to use mutually exclusive looking

behaviors by looking at different objects during different word segments.

This way, despite accuracy, each object received at least one look during

each of the four-word segments. This pattern is particularly salient for

learners who were more accurate at testing, suggesting that mutually exclu-

sive looks may be a good strategy for information selection that contributes

to successful learning. In addition, learners also used prior knowledge to

structure their looks. After a word was considered learned, learners strategi-

cally arranged their looks based on the mutual-exclusivity constraint within

a trial. Prior knowledge of correct mappings freed up more cognitive

resources, allowing participants to apply novel labels to novel objects. This

could reduce the degree of uncertainty within a trial to facilitate later

learning.

Knowing how adults select information to learn word–object
mappings, the next interesting question is: how do adults’ visual attention

patterns shed light on infant word learning? In the cross-situational

word learning task, 12- to 14-month-old infants were able to track

cooccurrences between labels and objects across trials and learn which label

reliably cooccurs with each object (Smith &Yu, 2008). In a follow-up eye-

tracking study using a similar CSL paradigm, Yu and Smith (2011) found

that at the beginning of training, looking patterns were similar across all

infants. As was the case with the adult participants’ results, initial looks

showed very little systematicity with many rapid short looks switching
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from one object to the other. This could be potentially helpful to word

learning as it allows infants to sample data about referent objects more

broadly. As training proceeded, infants who learned the word-referent

mapping at test started to show different looking patterns compared to

the nonlearners. Learners’ gaze patterns became more systematic and

gradually directed toward the correct referent (Yu & Smith, 2011). One

advantage of using infant eye-tracking data is that this method goes beyond

asking the question of whether or not infants can track distributional

information by empirically testing how looking behaviors during training

emerge across trials.

Relatedly, another approach to study infant visual attention is through

computationally explicit models. One recent model of multiobject visual

attention focused specifically on how attention shifts between objects in

an ideal learning situation (Pelz, Piantadosi, & Kidd, 2015). The ideal learner

model is trying to formalize what type of attentional behavior should be

expected in a system that is aiming at gathering information efficiently from

a complex environment. The parameters included in this process model

were: (1) the learning curve that the learner follows; (2) memory decay rate,

which sets limit on the learner’s short-term memory capacity; (3) the cost of

switching attention between objects; and (4) prior knowledge of the objects.

At each step, the model would calculate the amount of information it

expects to gain from each object and decide whether it should continue

to attend to the same object or switch attention to another object based

on the expected information gain. In a series of simulations, the model shows

that once the system picks up an object, it will maintain that information

held in memory by switching between all the previously attended objects.

Once the maximum number of objects has been picked up, switching

behavior becomes cyclical to maintain the amount of information remem-

bered for each object. As decay rate increases, fewer objects can be attended

to and the average amount of information learned for each object also

decreases. Although the underlying dynamics of attention and learning

are complicated, this process model provides several testable hypotheses that

can be applied to human attentional systems.

Currently, we know very little about infants’ visual attention, but the

study of looking behaviors and changes in looking behaviors will provide

detailed information with respect to understanding the mechanisms through

which infants visually select objects in natural scenes and how that selection

changes as a function of word and object-in-scene experiences.
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4.2 Real-world data
Language input matters to learning outcomes in the real world and early lan-

guage acquisition is based on data (Hart & Risley, 1995; Hoff, 2003;

Weisleder & Fernald, 2013). Today, with the increasing computational

ability to automatically process data, collecting data from naturalistic envi-

ronments is getting more and more feasible and will likely contribute to

developmental research in many ways. This approach will provide new

directions for quantifying the quality of children’s language input and reveal-

ing fresh perspectives on fundamental questions of language acquisition.

Data also matter to how learning models perform. Any statistical learning

mechanism, either based on HT or AL, uses and relies on the input. There-

fore, one critical aspect for studying infants’ developing word-learning

system is language input. Most studies on word learning are conducted in

the laboratory using screen-based displays of stimuli. We do not really know

what the child’s natural visual experience is and how these visual inputs

shape patterns of learning across the vast multitude of items/events in the

real world and across multiple timescales. One challenge that young word

learners face in early word learning is referential uncertainty (Quine,

1960). Many laboratory studies have been designed based on different

assumptions on the degrees of uncertainty in real-world word learning.

Some theorists assume infants’ everyday learning environment is messy.

Infants only learn at rare moments that are referentially transparent

(Trueswell et al., 2013). Others assume that even though individual naming

moment can be ambiguous, learners are able to use statistical learning across

naming events to find word-referent pairings (Smith & Yu, 2008). Different

assumptions have led to different kinds of experiments and theories. How-

ever, we should not be working from just assumptions alone. The ambiguity

of the learning environment for young learners involves answerable empir-

ical questions, just as: How likely are learners to be looking at the intended

referent when it is named in everyday environments? Do the visual proper-

ties (e.g., size and color) of objects influence where they look when hearing

a word label?

One way to study these questions is to combine a traditional screen-

based eye-tracking paradigm with naturalistic stimuli. In a recent study by

Zhang and Yu (2016), they explored the looking patterns of 12-month-

old infants using naturalistic images with varying visual properties (i.e.,

big vs small object size, center vs off-center object location) in order to

examine whether perceptual properties of objects in children’s own view
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during naming moments would influence how young infants select candi-

date objects to build word–object mappings. They first measured the total

number of objects attended to by infants and found that even given that

there were, on average, more than 10 objects in view, and also given plenty

of viewing time (7 s per image) to potentially attend to many objects, infants

only selectively attended to 3–6 objects per trial. In addition, they examined

how infants allocated their attention among the subset of objects they chose.

Do infants attend to those objects equally frequently or do they only primar-

ily attend to one or two objects? Zhang and Yu (2016) found that infants

spent more than 50% of time looking at one selected object, suggesting that

even though infants focused on only a few objects per trial, they predom-

inantly only looked at one object at least half of the time. Their results

indicate that visual properties of objects in infants’ own view during naming

moments directly impact how they select candidate objects to attend to.

Information from the world is filtered through not only the dynamics of

first-person views but also the learner’s own developing attention system

due to limited attentional resources.

A child’s learning environment may not be as messy as we thought.

Instead, there is a significant amount of information reduction through

selective visual attention from the infant’s own view. What is attended to

by the infant is not everything in the world and is not even everything in

their field of view. Infants’ own visual worlds are going to incrementally

change and influence how they select information and build word–object
mappings. Using realistic input may provide new information on the ambi-

guity of the scenes that coincide with parent naming events in naturalistic

environments, on how infants distribute gaze and visually select objects

in those scenes, on how looking behaviors change as a function of the

cooccurrences of heard words and visually selected objects, and on how this

learning might culminate in the power of a heard word to direct gaze to the

named object across many different scenes including both transparent and

highly cluttered ones.

4.3 Neuroimaging evidence
With advancement in neuroimaging technology, one recent study done by

Berens, Horst, and Bird (2018) collected functional MRI data during a

cross-situational word learning task to investigate whether learners’ neural

representation of the learning process over time supports a gradual AL

account or a rapid HT account. They found evidence demonstrating that
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the brain activities showed in the left hippocampus area support the

Propose-but-Verify model, which further indicates that participants are

more likely to form explicit hypotheses while performing the CSL task.

The neuroimaging data are also consistent with participants’ self-reported

strategies, which are mostly related to HT.

This is the first piece of neuroimaging evidence collected using CSL task,

but there are some limitations. As pointed out by Kachergis (2018), the task

used in the study is fairly simple with many repetitions. Therefore, learners

could be at different stages of learning, which may elicit different learning

strategies. In addition, real-life situations are more likely to contain multiple

word–object associations that make it challenging for learners to engage in

explicit hypothesis-testing. This “messier” input could create a “partial

knowledge” state, in which participants are not explicitly making one

hypothesis, but storing multiple possible mappings with different association

strengths with the correct mapping emerging over time. The neuroimaging

results do not rule out the possibility that CSL could be built upon AL oper-

ating in the background (more implicit) and AL may just be a more general

form of HT. More neuroimaging work on this topic is needed to help

advance our understanding of howword learning unfolds at the neural level.

5. General discussions

This chapter reviewed some past and current experimental studies and

computational models to elucidate aspects of the word learning process.

Researchers largely agree that statistical learning is a powerful mechanism

that learners can use to adapt to various features of the statistical structure

of language. Themain lesson from the experimental evidence reviewed here

is that human learners do seem capable of using statistical information to

learn word–object mappings from multiple data sources. Other than behav-

ioral studies, to learn more about the abilities and biases of human learners,

researchers need to keep investigating the step-by-step word learning

processes by proposing different computational models and testing computer

simulations.

The two classes of models (HT vs AL) might be considered to differ in

the mere details of how cooccurrence data are used. That is, they differ in the

operations that are performed on or the interactions within cooccurrence

data. The problem for theorists is that those “details” (the potentially

powerful operations) in how cooccurrence data are used may occur in a
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variety of ways and at several different points in the process of learning.

Perhaps the best way to solve this quandary and to advance theory is to

start with what we know to be the case and then ask how the machinery

of AL might give rise to different patterns of outcomes that are reasonably

described as HT. Modeling results help to make clear that we cannot judge

which class of models best describes human performance without knowing

more about the three separable steps of information selection, learning

machinery and storage, and then the retrieval and use of that information

to formulate a response in given tasks. Researchers need to better under-

stand aspects of the model (from information selection to core machinery

to decision making) and how it works, and we need to constrain those

component processes by collecting empirical evidence from humans about

those very same component processes.

Another critical point to keep in mind when investigating early

language development is the importance of studying real-time behaviors

in real-life contexts. Systematic lab experiments have long been the predom-

inant approach to answer developmental questions about word learning.

Although traditional methods have been very useful, the integration of

the collection of naturalistic high-density data with real-time analyses of

the cognitive processes involved in word learning will provide a valuable

framework for generating research questions to gain a comprehensive

understanding of children’s lexical development.
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